
Towards Understanding Code Readability and Its Impact on
DesignQuality

Umme Ayda Mannan
Oregon State University

mannanu@oregonstate.edu

Iftekhar Ahmed
University of California, Irvine

iftekha@uci.edu

Anita Sarma
Oregon State University

anita.sarma@oregonstate.edu

ABSTRACT
Readability of code is commonly believed to impact the overall qual-
ity of software. Poor readability not only hinders developers from
understanding what the code is doing but also can cause developers
to make sub-optimal changes and introduce bugs. Developers also
recognize this risk and state readability among their top informa-
tion needs. Researchers have modeled readability scores. However,
thus far, no one has investigated how readability evolves over time
and how that impacts design quality of software. We perform a
large scale study of 49 open source Java projects, spanning 8296
commits and 1766 files. We find that readability is high in open
source projects and does not fluctuate over project’s lifetime unlike
design quality of a project. Also readability has a non-significant
correlation of 0.151 (Kendall’s τ) with code smell count (indica-
tor of design quality). Since current readability measure is unable
to capture the increased difficulty in reading code due to the de-
graded design quality, our results hint towards the need of a better
measurement and modeling of code readability.
CCS CONCEPTS
• Software and its engineering→ Software reliability; Software
maintenance tools; Software design tradeoffs;

KEYWORDS
Readability, Design quality, Code smell

ACM Reference Format:
Umme Ayda Mannan, Iftekhar Ahmed, and Anita Sarma. 2018. Towards
Understanding Code Readability and Its Impact on Design Quality. In Pro-
ceedings of the 4th ACM SIGSOFT International Workshop on NLP for Software
Engineering (NL4SE ’18), November 4, 2018, Lake Buena Vista, FL, USA. ACM,
New York, NY, USA, 4 pages. https://doi.org/10.1145/3283812.3283820

1 INTRODUCTION
Software development is not an individualistic activity; it is a
team effort. In order to make changes, developers need to under-
stand their own, and their peers’ code. This implies that the code
needs to be well written and readable. This is especially relevant
to Open Source Software (OSS) projects, since new contributors to
the project might not have enough experience, might be unfamiliar
with the existing code base, and they might be reluctant to ask

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-6055-5/18/11. . . $15.00
https://doi.org/10.1145/3283812.3283820

other developers for clarifications. It comes to us as no surprise that
developers have identified readability-understandability as one of
their top three information needs [11].

Code that is difficult to read can have wide ranging consequences.
It can lead to changes being sub-optimal or changes that introduce
potential bugs. It is well established that maintenance of a code base
becomes difficult as the project evolves and the team size grows [8].
Researchers have looked at the impact of readability. Beacker et
al. [7] looked at the link between readability and understandability.
Researchers also identified that comments and full word identifiers
play an important part in understanding the code [14, 27, 28]. How-
ever, current studies have not investigated the evolution of read-
ability and it’s impact on design quality. Researchers have shown
that as a project grows older, it’s design quality degrades and tech-
nical debt accumulates [6]. Intuitively degradation in design quality
should have association with readability because code smells make
it difficult to understand the code by increasing duplication, ob-
fuscation etc. [6] Moreover code smells makes maintenance [18]
difficult as minor alterations require complex edits to the source
code which may have unintended side effects and ultimately lead
to bugs [25].
We conducted our empirical study to answer questions such

as: Can code readability metric reliably measure the evaluation of
source code? Do they increase, or decrease, over time? Do they have
an impact on the overall design quality? Without answering these
questions researchers cannot create models or tools that reflect the
right levels of readability status of a code base.

In this paper, we answer the following research questions:
• RQ1: What is the average readability scores of open source
projects?

• RQ2: How does readability evolve over the lifetime of a project?
• RQ3: Does readability impact design quality of a project?

2 RELATEDWORK
Researchers have been looking at ways of measuring readability
and its impact on software quality. Buse et al. [9] developed the first
model to measure software readability. They defined readability
as “a human judgment of how easy a text is to understand" Based
on their survey data, Posnett et al. [32] developed an improved
readability model using a smaller set of features. Their features
focus on the textual complexity or entropy of the source code. Butler
et al. [12] investigated the relationship between code quality and
readability. Buse et al. [9] also identified the relationship between
code readability, defects and code churn. Aggarwal et al. [5] showed
that readability impacts maintainability. Readability also impacts
the utility of test cases. Daka et al. [13] found that unreadable tests
are difficult to maintain and lose value to developers. They showed

18

https://doi.org/10.1145/3283812.3283820
https://doi.org/10.1145/3283812.3283820

NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA Umme Ayda Mannan, Iftekhar Ahmed, and Anita Sarma

that using readability to augment automated unit test generation
can help the quality of tests.

Researchers have been also investigating code smells which are
symptoms of poor design and implementation choices [18] and
their affect on maintainability of software [26]. Researchers have
shown association between code smells and bugs [29, 30], and code
maintainability problems [18]. Zazworka et al. [36] found that the
code smell like God Class is related to technical debt. Ahmed et
al. [6] found that ignoring the smells leads to “software decay”. Code
smells have been also associated with fault-proneness [19, 25].
Readability is not only an academic research topic, in fact Buse

et al. [11] found that developers rank readability of code as one
of their top information needs. On the other hand, Yamashita et
al. [34] found that a considerable portion (32%) of developers are
not aware of code smells. Both readability and code smells impact
maintainability, has association with bugginess, so we posit that
there is association between these two. To the best of our knowledge
no one has investigated the relationship between code smells and
readability of a code and our work sheds light on this association.

3 METHODOLOGY
In this study, our goal is to see the average readability of open
source projects, how they evolve over time and how that impact
software design quality. In the following paragraphs we discuss the
various steps we took to collect and analyze the data.

Project Selection Criteria:We selected active open source Java
projects from GitHub. We chose Java because it is the most popular
programming language [33], and there are more code smell detec-
tion tools for Java than other languages [16]. Initially, we randomly
selected 200 projects by using the GitHub search mechanism. From
these, we eliminate projects that were too small, that is, having
fewer than 10 files, or fewer than 500 lines of code. These filters
were essential to ensure that the projects we analyzed are represen-
tative for real-world projects, and are not throw-away code or class
projects, so we followed the guidelines proposed by Kalliamvakou
et al. [24]. This left us with 120 projects. Due to time constraints
we randomly selected 49 projects out of the remaining 120 for this
study. Table 1 provides a summary of features and other descriptive
information of our selected 49 projects.

Table 1: Project characteristics

Dimension Max Min Average Std. dev.

Line count 116,238 534 5,837 14,511.73
Duration (weeks) 350 10 41.37 43.18
of Developers 105 4 10.78 11.04

Measuring readability score: For our study first we calculate the
readability score for each method of our 49 projects using the state
of art model proposed by Posnett et al. [32]. They propose the z
metric, which uses the following formula:

z = 8.88 − 0.033V + 0.40Lines − 1.5Entropy (1)
We collect the Lines metric using the Cloc [1] tool.
We use the Halstead metrics [20] to calculate the Volume, V =
N log2 n, where the lengthN is the sum of total number of operators
(N1) and operands (N2). The Program Vocabulary (n) is the sum
of the number of unique operators (n1) and unique operands (n2).
Entropy for each method is calculated using the Python Entropy

library [2]. Entropy,H (X), is calculated using the following formula:

H (X) =

n∑
i=1

P(xi) log2 P(xi) (2)

whereX is a document and xi is a term inX . P(xi) is the probability
of a change occurring in a document. n is the total number of docu-
ments, in our case, Java source files. We then use the logit function

1
1+e−z to calculate the actual readability score. This normalizes the
results to be in the [0, 1] range. After calculating the readability
score of each method in the file, we use the median readability of
all methods as the readability measure for the whole file. We chose
this metric, as opposed to simply adding the readability metrics,
because concatenating multiple readable methods should not have
a negative impact on the overall readability of a file.

Measuring the evolution of readability: Our aim is to see
how readability evolve over time. Previous studies used different
ways of partitioning time. Izurieta et al. [22, 23] used releases as
the unit of time, others individual commits, or discrete time units
(years, months, weeks, days etc.). Though all of these approaches
should lead to similar findings, the “resolution” may be different.
Furthermore, none of these approaches lead to a true comparison
across projects. Projects work at different phases. Projects are of
different size, maturity level, and follow different release cycles
and policies. Individual commits are the only “level” measure, but
would be too fine grained for our purpose. We therefore selected
the week as our unit of measure because, while subject to some
variation from project to project, did give us fine-grained insight
into the evolution of projects.

Measuring Code Smells: To perform code smell analysis for
the selected projects, we selected inFusion [3] which detects a wide
range of 18 different code smells and have been validated [6] and
used by many other studies [15, 17, 21].

Data Analysis: To answer our third research question, we mea-
sure correlation using Kendall’s τ between total code smell count
of a file and readability score. We also perform a Wilcoxon rank
sum test to test if there is difference in the mean readability score
between smelly code and non-smelly code.

4 RESULTS
In the following section, we present our results structured around
our three research questions.
RQ1: What is the average readability scores of open source
projects?

To answer our first research question, we collected the readability
scores from 1766 files spanning 49 projects. From Figure 1, we see
that the readability score of all files are higher than 0.95 on a scale
of 0 to 1. In our data set, the mean readability score is 0.99 with
a standard deviation of 0.04. This indicates that, in general, OSS
projects have excellent readability measured using Equation 1 .�� ��Observation 1: The OSS projects have high readability scores.

RQ2: How does readability evolve over the lifetime of a
project?
Prior research has shown that, as the code base becomes larger

and more people contribute, the project quality degrades. It is com-
mon belief that readability impact the code quality. We hypothesize
that readability would also show some sort of degradation trend

19

Towards Understanding Code Readability and Its Impact on DesignQuality NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA

Figure 1: Median Readability Score

over time. To test this hypothesis, we perform a trend analysis of
readability scores over a 350 week period. From Figure 2 we see
that, though there is a small amount of fluctuation, eventually the
readability score remains steady over time. The shaded band is the
95% confidence interval indicating that the true regression line lies
within the shaded region. We know that the code quality measured
in terms of design quality degrades over time [6]. Once we saw
that readability stay at a constant level throughout a projects life-
time, we hypothesize that the correlation between code smell and
readability is very low. To check our hypothesis, we calculated the
correlation between code smell and readability.�

�
	Observation 2: The OSS projects maintain their high read-

ability scores over time.

Figure 2: Readability Score evolution over time. (Note: the
readability never exceeds 1. The line temporarily exceeding
1 is an artifact of the smoothing algorithm.)
RQ3: Does readability impact design quality of a project?

To answer our third research question, we check the correlation
between count of code smells and readability and find that readabil-
ity has a statistically non-significant correlation of 0.151 with code
smell count (Kendall’s τ correlation coefficient test, p < 0.13).�

�
	Observation 3: Readability scores do not correlate with design

quality, measured by code smells.

We also compare the mean readability score of program elements
that have code smells with the mean readability score of the pro-
gram elements that do not have code smells. The mean readability
score was 0.991 for program elements with code smell and 0.998

for program elements without code smells. The difference in the
mean readability score between these two groups is statistically
significant (Wilcoxon rank sum test, W = 31 737, p < 1.879 × 10−7).
Therefore, we find that program elements that have code smells
are, on average, less readable than entities that do not have a code
smell. However, when we checked the effect size using Cohen’s D
test using the effsize R library [4], we found that the d estimate
was 0.098 and was negligible.�
�

�

Observation 4: Readability of files with code smells is smaller
compared to files without code smells; However, the effect size
is negligible.

5 DISCUSSION
Prior research on design quality [6] has shown that projects degrade
over time, and they accumulate design debt. One might assume
that lack of readability contributes to this degradation, even if
only partially. This is intuitive since the lack of readability should
impede a developer from correctly comprehending the different
aspects of a program, which in turn would limit their knowledge
of the dependencies in the code, and the potential impact of the
changes they are performing. The lack of awareness regarding the
impact of changes have been associated with worsening of design
quality [35].
However, our analysis reveals almost perfect readability scores

across all projects in our data set. Moreover, we find that these
projects start with high readability scores andmaintain these scores,
despite small fluctuations. One possible reason behind such good
readability scores is, since OSS projects rely on volunteer contri-
butions and, therefore, need to keep their source code readable.
However, it is strange that these projects keep such good readabil-
ity scores despite receiving contributions from many developers,
mostly volunteers with varying levels of experience and project
knowledge. Another reason for having high readability scores could
be that the code base is public, and developers make extra effort to
keep the code readable. Or, it might be that if there are readability
issues, any contributor can fix these issues (the “many eyeballs" ef-
fect). We speculate that the widespread use of different style guides
and code review processes that are required when contributing
source code are forcing developers to write highly readable code.
We also found that readability scores are not correlated with

the code smell count. Based on our findings, we can speculate that
current code readability measurement is not an effective metric
when design quality is a concern. Also, it is possible that the metrics
used by researchers [9, 32] to measure readability is not appropriate
for large projects. The metric we use was proposed by Posnett et
al. [32], which was evaluated on small programs; so it might have
limited generalizability. Further research on large scale corpus is
needed to identify better metrics for modeling readability scores.
Once better models are identified, additional research that in-

vestigates the impact of these metrics on code quality is needed.
Using the current models we do not find any significant impact
of readability on code quality. However, with better measurement
metrics and models, we could see more significant impacts; Perhaps
even finding thresholds beyond which readability scores severely
impact quality, which developers can use to generate warnings.
Other kinds of support, for example dashboards or visualizations,

20

NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA Umme Ayda Mannan, Iftekhar Ahmed, and Anita Sarma

can then display the “health” metrics of the code base, including
readability scores to developers and managers. Recall both devel-
opers and managers had noted readability-understandability to be
their top-3 information needs [10].

6 THREATS TO VALIDITY
Our samples have been from a single project host site, Github. This
may be a source of bias, and our findings may be limited to open
source projects from Github. However, we believe that the large
number of projects sampled more than adequately addresses this
concern. Since we are relying on inFusion to detect smells, the
accuracy of our results depends on the accuracy of this tool. The
efficacy of it’s threshold-based detection strategies has been evalu-
ated in a previous study [6]. InFusion uses static program analysis
to identify smells, and research [31] shows that “intrinsically histor-
ical" code smells such as Parallel Inheritance are difficult to detect
solely through static analysis. The number of such smells might be
different when historical information is taken into account.

7 CONCLUSIONS
Developers need to read and understand code in order to main-
tain it effectively, therefore making readability a key information
need [11]. We studied the efficacy of current readability model
in measuring design quality across a large set of projects. Our
results show that projects have well maintained high readability
scores. Moreover, surprisingly readability is not associated with
code smells, which are perceived as important indicators of design
quality. Finally, we speculate that such lack of correlation is due to
the shortcomings of the models for measuring readability. We hope
that this paper provides a call to action for the research community
to engage with the topic of identifying better measurements for
readability, which intuitively should have a significant impact on
defect prediction, and ultimately on the code quality.

ACKNOWLEDGMENTS
This workwas supported in part byNSF grants 1560526 and 1815486.

REFERENCES
[1] [n. d.]. Cloc tool. https://github.com/AlDanial/cloc/. Accessed: 2017-03-1.
[2] [n. d.]. Entropy library. https://pypi.python.org/pypi/entropy/0.9/. Accessed:

2017-03-1.
[3] [n. d.]. InFusion. http://www.intooitus.com/inFusion.html. Accessed: 2014-01-01.
[4] 2017. effsize library. https://cran.r-project.org/web/packages/effsize/effsize.pdf.

Accessed: 2017-04-19.
[5] Krishan K Aggarwal, Yogesh Singh, and Jitender Kumar Chhabra. 2002. An

integrated measure of software maintainability. In Reliability and maintainability
symposium, 2002. Proceedings. Annual. IEEE, 235–241.

[6] Iftekhar Ahmed, Umme Ayda Mannan, Rahul Gopinath, and Carlos Jensen. 2015.
An empirical study of design degradation: How software projects get worse over
time. In Empirical Software Engineering and Measurement (ESEM), 2015 ACM/IEEE
International Symposium on. IEEE, 1–10.

[7] Ronald M Baecker and Aaron Marcus. 1989. Human factors and typography for
more readable programs. ACM.

[8] Rajiv D. Banker, Srikant M. Datar, Chris F. Kemerer, and Dani Zweig. 1993.
Software Complexity and Maintenance Costs. Commun. ACM 36, 11 (Nov. 1993),
81–94. https://doi.org/10.1145/163359.163375

[9] Raymond PL Buse and Westley R Weimer. 2008. A metric for software readability.
In Proceedings of the 2008 international symposium on Software testing and analysis.
ACM, 121–130.

[10] Raymond P.L. Buse and Thomas Zimmermann. 2011. Information Needs for
Software Development Analytics. Technical Report MSR-TR-2011-8. Microsoft
Corporation.

[11] Raymond PL Buse and Thomas Zimmermann. 2012. Information needs for
software development analytics. In Proceedings of the 34th international conference
on software engineering. IEEE Press, 987–996.

[12] Simon Butler, Michel Wermelinger, Yijun Yu, and Helen Sharp. 2010. Exploring
the influence of identifier names on code quality: An empirical study. In Software

Maintenance and Reengineering (CSMR), 2010 14th European Conference on. IEEE,
156–165.

[13] Ermira Daka, José Campos, Gordon Fraser, Jonathan Dorn, and Westley Weimer.
2015. Modeling readability to improve unit tests. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering. ACM, 107–118.

[14] Eric Enslen, Emily Hill, Lori Pollock, and K Vijay-Shanker. 2009. Mining source
code to automatically split identifiers for software analysis. In Mining Software
Repositories, 2009. MSR’09. 6th IEEE International Working Conference on. IEEE,
71–80.

[15] Vincenzo Ferme, Alessandro Marino, and F Arcelli Fontana. 2013. Is it a Real
Code Smell to be Removed or not?. In International Workshop on Refactoring &
Testing (RefTest), co-located event with XP 2013 Conference.

[16] Francesca Arcelli Fontana, Elia Mariani, Andrea Mornioli, Raul Sormani, and
Alberto Tonello. 2011. An experience report on using code smells detection tools.
In Software Testing, Verification and Validation Workshops (ICSTW), 2011 IEEE
Fourth International Conference on. IEEE, 450–457.

[17] Francesca Arcelli Fontana and Marco Zanoni. 2011. On investigating code smells
correlations. In Software Testing, Verification and Validation Workshops (ICSTW),
2011 IEEE Fourth International Conference on. IEEE, 474–475.

[18] Martin Fowler and Kent Beck. 1999. Refactoring: improving the design of existing
code. Addison-Wesley Professional.

[19] Tracy Hall, Min Zhang, David Bowes, and Yi Sun. 2014. Some code smells have a
significant but small effect on faults. ACM Transactions on Software Engineering
and Methodology (TOSEM) 23, 4 (2014), 33.

[20] Maurice Howard Halstead. 1977. Elements of software science. Vol. 7. Elsevier
New York.

[21] Mario Hozano, Henrique Ferreira, Italo Silva, Baldoino Fonseca, and Evandro
Costa. 2015. Using developers’ feedback to improve code smell detection. In
Proceedings of the 30th Annual ACM Symposium on Applied Computing. ACM,
1661–1663.

[22] Clemente Izurieta and James M Bieman. 2007. How software designs decay: A pi-
lot study of pattern evolution. In Empirical Software Engineering andMeasurement,
2007. ESEM 2007. First International Symposium on. IEEE, 449–451.

[23] Clemente Izurieta and James M Bieman. 2008. Testing consequences of grime
buildup in object oriented design patterns. In Software Testing, Verification, and
Validation, 2008 1st International Conference on. IEEE, 171–179.

[24] Eirini Kalliamvakou, Georgios Gousios, Kelly Blincoe, Leif Singer, Daniel M
German, and Daniela Damian. 2014. The promises and perils of mining GitHub.
In Proceedings of the 11th working conference on mining software repositories. ACM,
92–101.

[25] Foutse Khomh, Massimiliano Di Penta, Yann-Gaël Guéhéneuc, and Giuliano
Antoniol. 2012. An exploratory study of the impact of antipatterns on class
change-and fault-proneness. Empirical Software Engineering 17, 3 (2012), 243–
275.

[26] Philippe Kruchten, Robert L Nord, and Ipek Ozkaya. 2012. Technical debt: From
metaphor to theory and practice. Ieee software 29, 6 (2012), 18–21.

[27] Dawn Lawrie, Henry Feild, and David Binkley. 2006. Syntactic identifier concise-
ness and consistency. In Source Code Analysis and Manipulation, 2006. SCAM’06.
Sixth IEEE International Workshop on. IEEE, 139–148.

[28] Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. 2007. Ef-
fective identifier names for comprehension and memory. Innovations in Systems
and Software Engineering 3, 4 (2007), 303–318.

[29] Wei Li and Raed Shatnawi. 2007. An empirical study of the bad smells and class
error probability in the post-release object-oriented system evolution. Journal of
systems and software 80, 7 (2007), 1120–1128.

[30] Steffen Olbrich, Daniela S Cruzes, Victor Basili, and Nico Zazworka. 2009. The
evolution and impact of code smells: A case study of two open source systems.
In Proceedings of the 2009 3rd international symposium on empirical software
engineering and measurement. IEEE Computer Society, 390–400.

[31] Fabio Palomba, Gabriele Bavota, Massimiliano Di Penta, Rocco Oliveto, Andrea
De Lucia, and Denys Poshyvanyk. 2013. Detecting bad smells in source code
using change history information. In Automated software engineering (ASE), 2013
IEEE/ACM 28th international conference on. IEEE, 268–278.

[32] Daryl Posnett, Abram Hindle, and Premkumar Devanbu. 2011. A simpler model
of software readability. In Proceedings of the 8th working conference on mining
software repositories. ACM, 73–82.

[33] TIOBE. [n. d.]. TIOBE Index. http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html.

[34] Aiko Fallas Yamashita and Leon Moonen. 2013. Do developers care about code
smells? An exploratory survey.. In WCRE, Vol. 13. 242–251.

[35] Zhifeng Yu and Václav Rajlich. 2001. Hidden dependencies in program compre-
hension and change propagation. In Program Comprehension, 2001. IWPC 2001.
Proceedings. 9th International Workshop on. IEEE, 293–299.

[36] Nico Zazworka, Michele A Shaw, Forrest Shull, and Carolyn Seaman. 2011. In-
vestigating the impact of design debt on software quality. In Proceedings of the
2nd Workshop on Managing Technical Debt. ACM, 17–23.

21

https://github.com/AlDanial/cloc/
https://pypi.python.org/pypi/entropy/0.9/
http://www.intooitus.com/inFusion.html
https://cran.r-project.org/web/packages/effsize/effsize.pdf
https://doi.org/10.1145/163359.163375
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	4 Results
	5 Discussion
	6 Threats to Validity
	7 Conclusions
	Acknowledgments
	References

