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ABSTRACT
In the domain of software engineering NLP techniques are needed
to use and find duplicate or similar development knowledge which
are stored in development documentation as development tasks. To
understand duplicate and similar development documentations we
will discuss different NLP techniques as descriptive statistics, topic
analysis and similarity algorithms as N-grams, the Jaccard or LSI al-
gorithm as well as machine learning algorithms as Decision trees or
support vector machines (SVM). Those techniques are used to reach
a better understanding of the characteristics, the lexical relations
(syntactical and semantical) and the classification and prediction of
duplicate development tasks. We found that duplicate tasks share
conceptual information and are rather created by inexperienced de-
velopers. By tuning different features to predict development tasks
with a gradient or a Fidelity loss function a system can identify a
duplicate tasks with a 100% accuracy.
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1 INTRODUCTION
Nowadays developers do not only use software development docu-
mentations such as wikis, project work logs [16] or API reference
documentations [17] to develop software. Developers also use doc-
umentations and their embedded media files that are created and
maintained by the software community active on websites as Stack
Overflow, Eclipse Bugzilla or YouTube [18, 19, 30, 31]. Software
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developers create over 3,000 1 software documents as development
posts every day. This might lead to software development docu-
ments that can be similar to each other by their characteristics or
knowledge included. The software documents might be syntheti-
cally or even semantically similar to each other as code clones [11]
are and can be distinguished into different similarity types such as
a duplicate or similar development documentation.

Software developers spent 20% of their time on searching for
information [10, 26]. They take a look on similar software docu-
mentations that include similar and additional information as an
API reference document and/or Stack Overflow post to get new
inspirations on how to solve their current development task. A
linkage of development tasks that of the same type that have the
same software solution with a similar approach might safe time that
can be used to evolve new software solutions. This might increase
the productivity of the developer’s work day [15].

The software community is often unsure how and when to de-
clare a software document as similar. Bettenburg et al. or Rakha et
al. [4, 22] discusses several criteria when a software document as
bug report or a task can be considered as a duplicate. This uncer-
tainty might lead to a point where similar software documents will
be deleted in which it can be very useful for software developers
[4]. To understand the similarity of software documents and to
predict them there is a need for empirical studies and several NLP
techniques [12, 20].

2 RESEARCH DATA AND METHOD
Software developers organize their work in issue trackers as Eclipse
Bugzilla, Mozilla or Open Office [25]. They set different priorities
and severities as well as sub-task their development tasks [5, 24, 33].
There are 29 bug reports submitted every day [3] and there exist
over 225.000 bug reports in Eclipse as well as 420.000 bug reports in
Mozilla [4] already in 2008! Over 20% of the bug reports in Eclipse
and over 30% in Mozilla is duplicated.

Every development documentation in Eclipse Bugzilla has a same
structure (and is very similar to other issue trackers as Mozilla,
Open Office etc.)). It starts with a task summary as well as other
information that allocate the task to an Eclipse product and com-
ponent. A bug report defines different fields in the development
documentation that shows the relation between the current task
and other tasks as "Duplicates" 2.

To study duplicate bug development tasks we conduct a literature
review that especially focus on the five analysis to understand and
find duplicate development tasks. We found research papers and
extract findings that are relevant for the five types of analyses [8]
- characteristic, syntactic, semantic, classification and prediction
1https://api.stackexchange.com/2.2/info?site=stackoverflow
2https://bugs.eclipse.org/bugs/show_bug.cgi?id=227639
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analysis - to understand and find duplicate tasks. For every paper
we searched for the first publication which especially focus on the
relevant aspects for the analysis. Then we followed the citation list
and sorted the papers by the analysis made. Overall we found 35-40
papers and summarized the main findings and the NLP techniques
used in this paper.

3 TYPES OF ANALYSIS
The ultimate goal of this paper is to show the application of differ-
ent NLP techniques to study duplicate development documentation.
As recently published [8] to understand similar software develop-
ment documentation we also differentiate between a characteristic
analysis to understand the characteristics of duplicate software
development documentation. The syntactic and semantic analysis
will show how duplicate development documentation are lexically
related to each other. The classification and prediction analysis will
show what features can be used to understand and to predict a
duplicate software development documentation.

4 CHARACTERISTIC ANALYSIS OF
DUPLICATES

4.1 Frequencies and Structure of Duplicates.
In companies as Sony Ericsson [23] there are 10% (defect) duplicate
development tasks. In Mozilla [2] there are 30% duplicate develop-
ment tasks. In Eclipse Bugzilla [4] there are about 20% duplicate
development tasks. A duplicate bug report has a bug id, summary,
description and comments. Also other informations does exist in
a development tasks as the project name 3, the priority as well as
the severity of a bug [28] that characterizes a bug as well as other
contextual informations that can be derived from the system as the
used frameworks or libraries [1].

4.2 Content of Duplicates.
Bettenburg et al. [4] found that some Eclipse duplicates are obvious
to identify because they have the same title and/or description for
example "test". The ids of duplicate development tasks can be very
close to each other as Sureka et al. [29] found (50% of duplicates
have a difference of 3138 bug ids). Bettenburg et al. [4] also think
that duplicate development tasks can add additional information as
components, patches, screenshots and stack traces. Wang et al. [32]
found that developers use paraphrases (the edit-field Vs. input line
field) in duplicates and show that it is very hard to find paraphrases
of technical descriptions. Runeson et al. [23] found in an interview
with analysts that duplicates could often not be understood.

4.3 Reasons for Duplicates.
Cavalcanti et al . [5] found that the number of duplicates does not
depend on the type of a report as an enhancement or a defect. David-
son et al. [6] found that consumer projects does not have a higher
number of duplicates because of contributers that does not have
enough knowledge in using the software repository. Cavalcanti et
al . [5] found that the software size does not influence the number
of duplicates. They also found that developers which working in
a private project use more common words and using a template
3https://wiki.eclipse.org/WTP/Conventions_of_bug_priority_and_severity

when creating a development task then in an open source project
that might influence the number of duplicates too.

4.4 Creation and Closing Time of Duplicates.
Interestingly Bettenburg et al. [4] found that duplicate reports were
approximately added at the same or after short period of time (0.18 -
0.83 days) of the original or master report as Rakha et al. [22] found.
Cavalcanti et al. [5] found that the number of duplicates increase in
the first year of a software project. Davidson et al. [6] found that if
more bugs exist it takes longer to find duplicates. In comparison to
open source tracking systems as Bugzilla the frequency of existing
duplicates in Sony Ericsson is around 20 days for more then half
of the duplicates [23] which shows a strong correlation between
open and close dates.

5 SYNTACTIC ANALYSIS OF DUPLICATES
5.1 Terms & Paraphrases.
Runeson et al. [23] found that developers use synonyms to de-
scribe duplicate development tasks. Interestingly developers use
also words that are sensefull in the same development context [14]
as crash and dump. Sureka [29] found morpholic variations of word
when describing duplicate development tasks as switching and
changing to a bug which can be partly identified with a n-gram
algorithm that evaluates a sequence of characters (here: ing). For
duplicate bug reports that share more information as the noun as
"create getter" or "generate getter" the n-gram measure might be
more accurate. Developers describe duplicate development tasks
differently maybe because of a different interpretation of the failure
source as TextEditor or TextViewer. Sureka [29] found also that
developers use short form as "config" or "configuration" as well as
"temp" and "temporary". They also hyphenated phrases as "Ctrl-7"
and "Ctrl F7".

5.2 Informations & Concepts.
Runeson et al. [23] evaluated duplicate development tasks (in a Sony
Ericsson bug triaging system) by using the Jaccard algorithm and
others. They mentioned that often information of a development
co-occur in the document e.g. in the description of a development
tasks which is also mentioned in the severity field. Duplicated text
has its origin from the same users e.g. using same phrases. They also
think that different problems can be described by using the same
vocabulary. Sureka [29] found also that duplicate development tasks
contains misspelled words. They also found that duplicates contain
similar concepts which can be found by using my using a n-gram
mechanism that to measure a sequence of characters. For example
a development screencast "viewerContributions" and the duplicate
development task has "contributions" in its title. Wang et al. [32]
made also similar findings that developer often used paraphrases
to describe duplicate development tasks.

5.3 Similarities Between Duplicates.
Sureka [29] et al. could reach a similarity of development tasks of
up to 73.62% if both duplicate development tasks are located in the
same product and component (15.00%). There is a less syntactical
similarity if duplicates are located in another component. Even less
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when they are located in another product but are issued in a same
component (4.48%). Interestingly duplicate development tasks have
a higher syntactical similarity if they are not located in the same
product or component (6.90%).

6 SEMANTIC ANALYSIS OF DUPLICATES
6.1 Term Dependencies of Duplicates.
Sureka [29] found similar concepts in duplicate development tasks
especially in the systemmessages. For example they found StringIn-
dexOutOfBoundsException and StingIndexOutOfBounds in devel-
opment tasks. Wang et al. [32] found paraphrases in duplicate de-
velopment tasks especially in their summaries. We think a semantic
similarity between duplicate development tasks does depend on the
chosen terms (class names, method names etc.) when programming
software or when describing an issue in an issue tracker.

6.2 Context Dependencies of Duplicates.
Nguyen et al. [21] made several observations regarding to the se-
mantic similarity of duplicate bugs as developers using similar
terms used that can be understood in the same development context.
They observed that terms were mentioned in the same development
context as RemoteFileAction and org.eclipse.ui.DefaultTextEditor
which shows also that a semantic relation has not only be focused
on its text then also on other context information that can be as-
sociated with the e.g. project context. Alipour et al. [1] found also
several topics (by using the LDA algorithm) in a Android develop-
ment task that are typical for the software development tasks as
3G, alarm, audio, SD-card.

6.3 Identifying a Semantic Similarity Between
Duplicates.

Sureka et al. [29] found that measuring the similarity from a char-
acter level might be needed because of compound words as Out of
memory Vs. OutOfMemoryError example which is a typical writing
pattern for coding 4. A semantic comparison of duplicates is also
possible when considering the context information [1] of duplicate
development task. Dit et al. found [7] in their semantic comparison
of the comments of the developments tasks descriptions to detect
duplicate development tasks.

7 CLASSIFICATION AND PREDICTION OF
DUPLICATES

7.1 Feature Selection.
Researchers use textual features that are extracted from the sum-
mary or the description of a development task. They also use cate-
gorical features as a priority of a development task, the component
name, type or version. They also use contextual features [1] that can
be extracted from the architecture of a system of several develop-
ment tasks e.g. their topics as 3G, alarm, android_market or others.
Duplicate development tasks provide several information to classify
them. For example Alipour et al. [1] use technical terms derived
from the android system (especially its architecture) to classify a
duplicate. Sureka et al. [29] calculated character-based n-grams
4https://msdn.microsoft.com/en-us/library/ms229043(v=vs.100).aspx

between the text mentioned in duplicates (summary and descrip-
tion). Runeson et al. [23] calculated the cosine similarity between
dupicates. Sun et al. [28] extracted 54 different features (27 features
based on single words and 27 features that were based on bigrams)
that were calculated on the similarity (e.g. idf of different input
parameters) of the text (summary and description) of duplicate and
non-duplicate pairs. Sun et al. [27] extended their method by a
parameter tuning based on a stochastic gradient descent that en-
ables to tune the free parameters in the used algorithm (BM25Fex).
Lazar et al. [13] used up to 25 features (textual as well as categorical
(fields as product name, component name) to classify duplicates
and non-duplicates. Zhou [34] used nine textual/statistical features
to classify duplicates and non-duplicates. The nine textual features
were calculated from the text of two development tasks (idf, Jaccard
similarity..). The nine textual features were also weighted with a
Fidelity loss function and a stochastic gradient descent algorithm.

7.2 Feature Extraction.
Zhou et al. [34] used nine different calculation methods to classify
a duplicate development task pair. We think that the overall idea of
all the calculation methods which they used was to compare the
frequency and existence of words that occur in different information
entities of a development task as the summary and the descriptions.
To decrease the influence of large numbers (many words occur in
two descriptions) they also used a logarithmic function to lower the
influence of long descriptions. Runeson et al. [23] also focus on the
existence of words and similarity of text that are calculated by the
Jaccard, Dice and Cosine algorithm. Lazar [13] et al. and others also
used limitation techniques to improve the similarity measurement
as as word.net to find similar words in duplicate development tasks.

7.3 Feature Optimization.
It is possible to tune parameters to improve the classification of
duplicate development tasks. When researchers started to classify
and predict duplicates they treated the documents equally. Nguyen
et al. [21] uses the BM25F algorithm to weight their features. The
overall benefit of using the BM25 then the TF-IDF that it allows to
change the free parameter k to get a higher similarity value between
duplicate development tasks because its possible to react on the
number of terms which gives the chosen textual features a different
weights. Nguyen et al. [21] used also the LDA algorithm to find
similarities between duplicate development tasks. The found the
number of topics K for the LDA algorithm can range from 140-320
for Eclipse or 100-240 for Mozilla. Zhou [34] et al. uses different tex-
tual features that compare the similarity of duplicate development
tasks. The researchers weight their features by iterating through
a training set until they received the best ranking of duplicate de-
velopment tasks. Kaushik et al. [9] et al. found also that for Eclipse
the optimal number of topics by using the LSI or LDA algorithm is
400-550 and for Mozilla they are 400-500 which shows also that the
number of topics might depend on the features chosen as well as
the source of data.

7.4 Duplicate Prediction.
Sun et al. [28] used a support vector machine (SVM) to identify
duplicate development tasks. They used 54 features and could reach
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a recall of up to 0.6 when considering a list of 10 items. Lazar [13]
used several machine algorithm (Nearest Neighbors, Linear SVM,
RBF SVM,Decision Tree, Random Forest or Naive Bayes) by using 25
features to identify duplicates. For all repositories they could reach
a 0.99 accuracy, precision and recall. Also Alipouret al. [1] could
reach an up to 0.95 accuracy by using contextual information as the
android architecture words, non-functional requirement (NFR) or
Android topic words as well as different machine learning algorithm
(O-R, LogisticRegression, Naive Bayes, C4.5 and K-NN). The C.4.5
algorithm, a decision tree model outperformed best with the used
features.

8 SUMMARY OF THEWORK
In this work we have discussed the characteristics of duplicate
development tasks. We found that it might often depend on knowl-
edge and expertise to use the right terms in the right development
context. Finally, we have discussed that several features are needed
to identify a development task. Contextual features might be pre-
dominant when developers do not tune the features e.g. by using a
gradient descent or combining the most informative features that
serve as strong indicators for a duplicate development task.

We found that concepts let appear tasks as semantically similar.
A concept in a development context can be a basis class that were
extended or a similar method that were used in development tasks.
Similar terms in duplicate development tasks might be better under-
stood when working in a development context. There are several
systems as Mylyn or others that support developers when resolv-
ing issues. We think there should be a supportive system available
in issue trackers that aggregates not only system data then also
context data. This might extend the development documentation
by adding the most relevant terms to a duplicate development task.
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