
Mining Monitoring Concerns Implementation in Java-Based
Software Systems

Grigoreta Sofia Cojocar

Babeş-Bolyai University

Cluj-Napoca, Romania

grigo@cs.ubbcluj.ro

Adriana-Mihaela Guran

Babeş-Bolyai University

Cluj-Napoca, Romania

adriana@cs.ubbcluj.ro

ABSTRACT
In this paper we describe a new approach for automatic identifica-

tion of monitoring concerns implementation in Java-based software

systems.We also present the results obtained by using our approach

on 21 Java-based systems, ranging from small to very large systems.

CCS CONCEPTS
• Software and its engineering→Maintaining software; Soft-
ware evolution;

KEYWORDS
monitoring concerns implementation, automatic identification

ACM Reference Format:
Grigoreta Sofia Cojocar and Adriana-Mihaela Guran. 2018. Mining Monitor-

ing Concerns Implementation in Java-Based Software Systems. In Proceed-
ings of the 4th ACM SIGSOFT International Workshop on NLP for Software
Engineering (NL4SE ’18), November 4, 2018, Lake Buena Vista, FL, USA. ACM,

New York, NY, USA, 4 pages. https://doi.org/10.1145/3283812.3283821

1 INTRODUCTION
For more than a decade researchers have tried to propose tech-

niques for automatic crosscutting concerns identification, with the

goal of refactoring. However, the results obtained are more like

hints on where to start looking for them, and, in the end, the user

still has to manually select the most appropriate results. One of the

causes for these results is that the proposed approaches are more

like "one-size-fits-all" solutions that try to identify all the crosscut-

ting concerns that exist in a software system, without taking into

consideration the particulars of each crosscutting concern. There

are many different kinds of crosscutting concerns, like monitoring,

security, transaction management, and each kind of concern has its

particulars, and, maybe, it should be mined differently than other

concerns. Still, the question "Can crosscutting concerns be automati-
cally identified from a system’s code?" remains. In order to answer

this question, we focused on one kind of crosscutting concern,

namely monitoring. Monitoring crosscutting concerns record the

behaviour of a software system during development, testing and

execution in its own environment. The monitoring concerns are

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-6055-5/18/11. . . $15.00

https://doi.org/10.1145/3283812.3283821

usually classified in: logging, tracing and performance monitoring.

Logging produces messages specific to the logic carried by a piece

of code. Tracing produces messages for lower-level events such as:

the entry or exit of a method, exception handling or object con-

struction, and state modification. Performance monitoring measures

the time taken by specific parts of the system to execute and/or the

number of times a particular method is invoked.

We have started our research by analyzing how two monitoring

concerns, namely logging and tracing, are implemented in order to

gather information about the patterns used and their particulars. In

this paper we present our original approach for automatic identifica-

tion of logging and tracing monitoring concerns implementation in

Java-based software system. This approach was developed based on

the findings of our previous studies of how monitoring crosscutting

concerns are implemented in object-oriented software systems.

The rest of the paper is structured as follows. Section 2 briefly

presents the main results of our monitoring concerns studies. Our

original approach is described in Section 3. Experimental results

are given in Section 4. Similar approaches are described in Section

5, and further work is presented in Section 6.

2 MONITORING CONCERNS STUDY
In previous studies we have manually analyzed ten open-source

software systems, developed in Java or C# in order to discover the

pattern(s) used for monitoring concerns implementation [2, 3]. The

most important results of the studies are:

(1) Monitoring concerns are implemented using a logging toolkit.
The logging toolkit is responsible for recording the messages

and for filtering only those messages specified in the config-

uration. The toolkit is either implemented in the analyzed

software system or it is from a third-party.

(2) Software systems usually use more than one logging toolkit for
monitoring. However some toolkits are used in just a couple

of classes.

(3) Different patterns are used for monitoring concerns implemen-
tation. Even in the same system, monitoring concerns are

implemented using different patterns. In our studies we have

identified six different patterns, the three most used being:

P1 - An object of the type used for recording messages from

the logging toolkit, called logger, is declared as an attribute
in the classes where monitoring must be performed. Then,

each operation that needs to record monitoring messages

calls the corresponding methods on this object.

P2 - There is no declaration of a logger object as an attribute,

but in each method where messages need to be recorded a

local logger object is declared, and then used for recording.

22

https://doi.org/10.1145/3283812.3283821
https://doi.org/10.1145/3283812.3283821

NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA G.S. Cojocar, A.M. Guran

P3 - The logger attribute is inherited from a base class (there is

no new declaration of a logger attribute), and this inherited
attribute is used whenever needed.

From our studies we have determined that each analyzed system has

a primary (or predominant) pattern used for monitoring concerns

implementation and a few secondary ones. P1 seems to be the

primary pattern of choice formost systems, still there are exceptions

[2]. For Java-based systems, pattern P1 was used in more than 88%

of the source files with monitoring for all analyzed systems. Also,

in the case of P1 pattern different styles were used for declaring

the logger attribute, excluding the access modifier. Four styles were

identified in the analyzed Java-based systems:

S1a - as a regular attribute (eg. LoggerType loggerName),
S1b - as a static attribute,

S1c - as a final attribute, and

S1d - as a static and final attribute.

S1d seems to be the preferred style for Java-based systems, but

there are exceptions [2].

3 NEW APPROACH
Our new original approach is based on the results obtained in the

previous studies. These results have shown that for Java-based

systems the most used pattern for logging and tracing implemen-

tation is P1 - the declaration of an attribute, usually as a static
and/or final one, very often called ’log’ or ’logger’, and then calling
different methods on this attribute.

The approach tries to identify only logging and tracing moni-

toring concerns by analyzing the static and/or final attributes
defined in a Java-based software system. It consists of automatically

identifying the type(s) of the logger object, and then the classes

in which this object is used. The challenging part of the approach

is the automatic identification of the logger object’ s type. Based
on the results of our studies, in a software system there may be

multiple types used for the logger object.
In order to automatically identify the type(s) of the logger object

we perform two steps: Computation and Filtering.
Computation. For a Java-based software system S we compute

the set AttributesTypes (S) = {T1,T2, ...,Tp} corresponding to the
types used for declaring the attributes in the system. Each element

Ti , i ∈ {1, ...,p} from the set contains the following data: Ti =
⟨TypeNamei , SFAttri ,ReдAttri ,ClassesSFAttri ,ClassesReдAttri ,
AttributesNamesi ⟩ where:

• TypeNamei is the fully qualified name of the type, eg. int
or java.lang.String.
• SFAttri is the number of times a static or final attribute

of this type was declared in the system S .
• ReдAttri is the number of times a regular attribute of this

type was declared in the system S . We consider an attribute

as regular, if neither of the static or final modifiers were

used for its declaration.

• ClassesSFAttri is the set of classes in which at least one

static or final attribute of this type was declared.
|ClassesSFAttri | ≤ SFAttri , where |A| denotes the number

of elements in the set A.
• ClassesReдAttri is the set of classes in which at least one reg-
ular attribute of this type was declared. |ClassesReдAttri | ≤
ReдAttri .

• AttributesNamesi is the set containing the static or final
attributes’ names and their frequency. AttributesNamesi =
{(namei1, f reqi1), ..., (nameiki , f reqiki)} , where

1 ≤ ki ≤ SFAttri and

ki∑
j=1

f reqi j = SFAttri .

Filtering. After computing the set AttributesTypes (S) we apply
two filters in order to automatically determine the types used for log-
ging or tracing. The first filter removes the following types: all Java

primitive types (byte, short, int, float, double, char), any arrays
of a primitive type (like byte[] or int[][]), all the types defined
in java.util or java.lang packages (such as java.lang.String,
java.util.ArrayList) but not the subpackages (types like java.
lang.reflect.Method will not be removed), any arrays of a type

defined in these two packages (eg. java.lang.String[]). It also
removes the types that were used for declaring static or final at-
tributes in less than 3 classes (SFAttr < 3). Monitoring concerns are

crosscutting, meaning that they are implemented in many different

classes. We consider that if a static or final attribute of the same

type is defined in more than 3 classes than it can be considered as

crosscutting.

Let AttrTypesF1 (S) be the set of types remaining after the first

filter is applied. The second filter computes for each remaining type

its probability of being a logger type, using Definition 3.1.

Definition 3.1. Probability of being a logger type.
Being given a type Ti used in the system S , Ti ∈ AttributesTypes (S),
we define the probability of being a loддer type of Ti , Ploд(Ti) , as

Ploд(Ti) =

ki∑
j=1

f reqi j · isLoддerName (namei j)

SFAttri ,

where isLoддerName is defined as:

isLoддerName (s) =

{
1 if

′loд′ is a substring of s
0 otherwise.

The isLoддerName (s) function performs a case insensitive com-

parison of ’log’ and s . The definition of Ploд is based on the ob-

servation from our studies that most of the names used for the

logger attribute’ name are ’log’, ’logger’, ’LOG’, ’Logger’ or the

name contains the ’log’ or the ’logger’ substring.

The result of the second filter is the set LoдTypes (S) defined as

follows:

LoдTypes (S) = {Ti ∈ AttrTypesF1 (S) | Ploд(Ti) >= 0.5}.

In the results set, we select only the types whose probability of

being a logger type is greater or equal to 0.5. If |LoдTypes (S) | = 0

then we conclude that tracing or logging concerns are not imple-

mented in the system S . If |LoдTypes (S) | > 0, then all the types

Ti ∈ LoдTypes (S) are used for tracing or logging monitoring con-

cerns implementation, and the setClassSFAttri ∪ClassesReдAttri
contains the classes in which they are implemented using pattern

P1.

4 EXPERIMENTAL RESULTS
We have applied our new approach for automatic identification of

tracing and logging implementation to 21 randomly chosen Java-

based software systems, ranging from small systems with under

100 .class files analyzed to very large systems with thousands of

23

Mining Monitoring Concerns Implementation NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA

Table 1: Analyzed Software Systems

Software Version Number of
system analyzed files

Seedstack 3.2.5 80

Openkoreantext 2.3.1 98

Dozermapper 6.4.0 269

Sonar-orchestrator 3.20.0.1708 347

Neuroph 2.94 382

JGap 3.6 447

Mars-sim 3.10 711

Spoon 7.0.0 1009

Atomix 3.0.0-rc8 1116

Atlas 5.1.6 1132

Ant 1.10.5 1141

Unboundid 4.0.7 1146

Maven-core 3.5.4 1167

JEdit 5.4 1355

Tomcat 9.0.10 1609

ArgoUML 0.34 2248

Hadoop 3.1.0 4442

Spring 5.0.8 4487

Hibernate 5.3.3.Final 4665

Drill-java-exec 1.14.0 5112

Hive-exec 3.1.0 21531

.class files analyzed, as presented in Table 1. The table also shows

the version used for each analyzed system. The .jar files containing

the analyzed .class files were almost all downloaded from Maven

Repository and the files were analyzed using Soot [6].

The results obtained using our approach are presented in Table

2. For each analyzed system we give the number of results obtained,

the value of Ploд for each result, the type’s name, the value of

SFAttr and theAttributesNames for the corresponding type. If the
AttributesNames contains ’...’ it means that the set contains other

elements, but it was too large to be fully included in this table.

As the results show our approach was able to automatically and

correctly identify the types used for logging and tracing concerns

(or their absence from the system) for 17 out of the 21 analyzed

software systems. For 3 systems, namely Hadoop, Drill-java-exec

and Hive-exec, the results were partially correct, and for 1 system,

namely Mars-sim the results were incorrect. The approach was also

able to automatically identify multiple logger types for 5 systems;

for one of them, namely Hive-exec, identifying no less than 5 types

used for logging or tracing implementation.

For each system whose results were only partially correct, the re-

sults set contains one or two types that are not used for monitoring

implementation, but the Ploд value was high enough to be included

in the results set, due to the names used for declaring the attributes,

i.e. the names contain the ’log’ substring (e.g. ’networktopology’,

’loggedInUgi’, ’loginUser’, and ’chronology’). For Mars-sim system,

the results set contains just one type for the logger object, but the
type was not correctly identified. The problem is, again, due to

the Ploд value, which is relatively high as some attributes’ names

contain the ’log’ substring, i.e. ’val$dialog’.

False positives. The results obtained by the approach included a

few false positives (types which were returned in the result sets, but

are not used for monitoring concerns implementation), however

their number is relatively low. From a total of 38 types returned by

our approach for all the analyzed software systems, only 5 types

were false positives (the ones emphasized in Table 2).

False negatives. None of the software systems used in our experi-

ments have an apriori published list of types used for monitoring

concerns implementation. We do not know if other types should

have been included in the results set. An in-depth analysis of each

system is required to determine if there are any false negatives.

5 RELATEDWORK
In the beginning of 2000, many different techniques that tried to

automatically identify all crosscutting concerns from a software

system, called aspect mining techniques, were proposed. Monitor-

ing concerns are crosscutting concerns, so all those techniques can

be considered related to our work. However, those techniques do

not automatically distinguish between different types of crosscut-

ting concerns when they return the results, leaving this task to the

user. Mens et al. provided an overview of the problems encountered

by the proposed aspect mining techiques in [5]. Our approach fo-

cuses on only one kind of crosscutting concerns, and the user does

not have to perform an additional selection after the results are

returned.

In [1, 4] we proposed a similar approach for identifying the

logger object type, but instead of computing a probability for each

type and applying the second filter, we just sorted descending the

possible types using the value of SFAttr . With that approach we

were able to automatically identify one possible type for the logger
object, as for most case studies it was the first ranked type. However

that approach failed to automatically determine whether or not

monitoring concerns were implemented in the system, and it also

provided many false positives.

6 FURTHERWORK
Encouraged by the results obtained with this original approach, we

will continue our work in the following directions:

• To use this approach on C#-based systems.

• To try to reduce the false positive results.

• To include in the classes resulting set, the ones where moni-

toring is implemented using patterns P2 and P3.
• To study the implementation of other crosscutting concerns.

REFERENCES
[1] G.S. Cojocar and A.M. Guran. 2018. On Automatic Identification of Monitoring

Concerns Implementation. In Acta Electrotechnica et Informatica, Vol. 3. to appear.
[2] G.S. Cojocar and A.M. Guran. 2018. A Study of Monitoring Crosscutting Concerns

Implementation. In Proceedings of the 40th International Conference on Software
Engineering: Companion Proceeedings (ICSE ’18). ACM, NY, USA, 169–170.

[3] G. S. Cojocar. 2016. On Top-Down Aspect Mining for Monitoring Techniques

Implementation. In Proceedings of IEEE 11th International Symposium on Applied
Computational Intelligence and Informatics (SACI). IEEE, 249–254.

[4] G. S. Cojocar and A. M. Guran. 2017. On A Top Down Aspect Mining Approach

for Monitoring Crosscutting Concerns Identification. In Proceedings of IEEE 14th
International Scientific Conference on Informatics (Informatics 2017). IEEE, 51–56.

[5] Kim Mens, Andy Kellens, and Jens Krinke. 2008. Pitfalls in Aspect Mining. In

Proceedings of the 2008 15th Working Conference on Reverse Engineering (WCRE
’08). IEEE Computer Society, Washington, DC, USA, 113–122.

[6] Soot [n. d.]. Soot: a Java Optimization Framework. ([n. d.]).

http://www.sable.mcgill.ca/soot/.

24

NL4SE ’18, November 4, 2018, Lake Buena Vista, FL, USA G.S. Cojocar, A.M. Guran

Table 2: Software Systems’ Results

System Results Plog Type’s Name SFAttr Attributes’ names and frequency

Seedstack 1 1.0 org.slf4j.Logger 8 { (LOGGER, 8) }

Openkoreantext 0 - - - -

Dozermapper 1 1.00 org.slf4j.Logger 19 {(LOG, 7), (log, 12)}

Sonar-

2

1.00 org.slf4j.Logger 12 {(LOG, 10), (LOGGER, 2)}

orchestrator 0.97 java.util.logging.Logger 39 {(logger, 22), (authLogger, 2), (stmtDT, 1), ...}

Neuroph 1 1.00 org.slf4j.Logger 9 {(LOG, 5), (LOGGER, 4)}

JGap 1 1.00 org.apache.log4j.Logger 10 {(LOGGER, 4), (log, 6)}

Mars-sim 1 0.60 javax.swing.JDialog 5 {(val$dialog, 3), (val$frame, 1) ,... }

Spoon 1 1.00 org.apache.log4j.Logger 3 {(LOGGER, 3)}

Atomix 1 0.98 org.slf4j.Logger 51 {(LOGGER, 33), (delegate, 1), (log, 17)}

Atlas 1 1.00 org.slf4j.Logger 138 {(logger, 138)}

Ant 0 - - - -

Unboundid 1 1.00 java.util.logging.Handler 3 {(logHandler, 3)}

Maven-core 2

1.00 org.codehaus.plexus.logging.Logger 3 {(logger, 3)}

1.00 org.eclipse.aether.spi.log.Logger 3 {(LOGGER, 1), (logger, 2)}

JEdit 0 - - - -

Tomcat 3

1.00 org.apache.juli.logging.Log 164 {(log, 162), (logger, 2)}

0.83

org.apache.tomcat.util.

6 {(invalidCookieLog, 1), (userDataLog, 2), ...}

log.UserDataHelper

0.75 java.util.logging.Logger 4 {(logger, 1), (val$parent, 1), ...}

ArgoUML 1 1.00 org.apache.log4j.Logger 253 {(LOG, 253)}

Hadoop 4

1.00 org.slf4j.Logger 321 {(LOG, 306), (LOGGER, 1), (blockLog, 2), ... }

1.00 org.apache.commons.logging.Log 100 {(LOG, 92), (MetricsLog, 1), ...}

1.00

org.apache.hadoop.hdfs.server.

3 {(editLog, 1), (log, 1), ...}

namenode.FSEditLog

1.00 org.apache.hadoop.net.NetworkTopology 3 {(networktopology, 2), ... }

Spring 1 1.00 org.apache.commons.logging.Log 233 {(logger, 229), (pageNotFoundLogger, 3), ... }

Hibernate 4

1.00 org.hibernate.internal.CoreMessageLogger 245 {(LOG, 199), (log, 46)}

1.00 org.jboss.logging.Logger 171 {(LOG, 25), (LOGGER, 1), (log, 145)}

1.00

org.hibernate.internal.

10 {(log, 5), (MSG_LOGGER, 1), (LOG, 4)}

EntityManagerMessageLogger

1.00

org.hibernate.engine.jdbc.spi.

8 {(sqlStatementLogger, 4), ...}

SqlStatementLogger

Drill-java-exec 2

0.98 org.slf4j.Logger 577 {(logger, 555), (tracer, 12), (log, 3), ... }

0.66

org.apache.hadoop.security.
3 {(loggedInUgi, 1), (loginUser, 1)}

UserGroupInformation

Hive-exec 7

1.00 org.apache.commons.logging.Log 44 {(LOG, 44)}

1.00 java.util.logging.Logger 20 {(log, 4), (logger, 16)}

1.00 org.apache.hadoop.hive.ql.log.PerfLogger 13 {(perfLogger, 12), (PERF_LOGGER, 1)}

1.00 org.joda.time.chrono.BasicChronology 9 {(iChronology, 9)}

1.00

org.apache.hadoop.hive.ql.parse.

3 {(replLogger, 3)}

.repl.ReplLogger

0.99 org.slf4j.Logger 860 {(LOG, 785), (LOGGER, 50), (logger, 4), ...}

0.62 org.joda.time.Chronology 13 {(chronology, 1), (iChronology, 7), ...}

25

	Abstract
	1 Introduction
	2 Monitoring Concerns Study
	3 New Approach
	4 Experimental Results
	5 Related Work
	6 Further Work
	References

